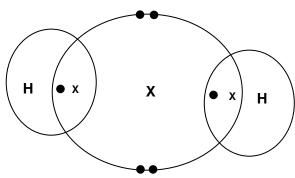
PHYSICAL SCIENCE 6888/02

Paper 2 October/November 2019

Confidential

MARK SCHEME

{6888/02}


MARKS: 80

© ECESWA 2019 [Turn over

1	(a)	(i)	0 °C;	[1]		
	()	(ii)	100 °C;	[1]		
	(b)		sure the distance between the two fixed points;	[1]		
	` ,	divide distance by 100;				
	(c)	(i)	sensitivity of the thermometer increases;	[1] [1]		
		(ii)	divisions will be wider;	[1]		
2	(a)	bauxite;				
	(b)	lette	[1]			
	(c)	aluminium more reactive than carbon;				
			not be displaced by carbon from its compounds;	[1]		
	(d)	low density;				
		strength; malleable;				
			eable, e resistant to corrosion;			
				max 2 marks]		
3	(a)	3 ×1	10 ⁸ m/s OR 3 ×10 ⁵ km/s;	[1]		
	(b)	conv	version to metres;	[1]		
		c= w	c= wavelength X frequency OR 3x10 ⁸ / 200;			
		1.5x	10 ⁶ Hz;	[1]		
	(c)		ys have a much higher frequency than radio waves/X-rays are more			
			rgetic;	[1]		
		and	can cause birth defects/cancers when they penetrate the skin;	[1]		
4	(a)	(i)	oxygen;	[1]		
		(ii)	both have 8 protons;	[1]		
			X has 8 neutrons, Z has 9 neutrons; A-different number of neutrons	[1]		
			(1 mark lost if no evidence of the use of the table)			

(b)

		evidence of sharing;							
		octet;			[′	1]			
		A- O instead of X.							
	(c)	Na ₂ X has a higher melting point/H ₂ X has a lower melting point							
		Na ₂ X has strong forces of	as weak Van der Waals forces;	; [1	1]				
(d)									
				<u> </u>					
		compound	colour	oxidation state					
		sodium compounds		fixed or specified value of Na;					
		copper compounds	blue / coloured;	variable/ 1 and 2;					
5	(a)	(i) K.E. = ½ mv ² OR ½ 0.09 <u>J;</u> (ii) PE = mgh OR 0.09 0.45m;	·			1] 1]			
		(iii) no air resistance/no energy is lost;				1]			
	(b)	marble C will reach the same height as B ; mass has no effect on the acceleration due to gravity;							
6	(a)	copper(II) oxide;							
	(b)	(ionic) precipitation;							
	(c)	water;							
	(d)	acidic oxide;			[1	1]			
		reacts with water to form	ı an acid;		[1	1]			
7	(a)	2V;			[′	1]			
	(b)	(i) I=V/R OR 2/6;			[1	1]			
		0.3A;			[1	1]			

		(ii)	Q= It OR 0.3 ×10 s;	[1]
			3C;	[1]
		(iii)	$R_{12}=(R_1R_2)/(R_1+R_2)$ OR $(2x3)/(2+3)$; oe	[1]
			1.2Ω;	[1]
		(iv)	1.7 + 0.3 = 2A;	[1]
8	(a)	(thermal) decomposition;		[1]
	(b)	(i)	$RFM = 40 + 12 + 16 \times 3;$	[1]
			= 100;	[1]
			$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
		(ii)	$n=\frac{100 g / mole}{} ;$	[1]
			= 0.2 moles CaCO ₃ ;	[1]
			ratio of moles CaCO₃: CaO	
			1 : 1	
			moles CaO = 0.2 moles;	[1]
		(iii)	Ratio of moles CaCO ₃ : CO ₂	
			1 : 1	
			= 0.2 moles;	[1]
		(iv)	0.2 moles \times 24 dm ³ /mol;	[1]
			4.8 dm ³ ;	[1]
	(c)	(i)	limestone heated with sand and sodium carbonate;	[1]
		(ii)	calcium oxide reacts with impurities (silicon oxide);	[1]
			slag (calcium silicate) formed;	[1]
9	(a)	step	p-up;	[1]
	(b)	to re	[1]	
	(c)	ac ir	[1]	
		indu	ces changing magnetic field in core;	[1]
		indu	ices ac in the secondary coil;	[1]
	(d)	$V_pI_p=$	= V _s I _s OR 21 000 000 = 115 000I _s ;	[1]
	` ,		.6 A;	[1]
4.5				
10	(a)	enzy	ymes; Allow named enzyme	[1]
	(b)	hydr	rolysis;	[1]

(c)

OH-functional group; [1] correct structure; [1] (d) bacteria; [1] oxidise ethanol; [1] 222 87; (a) [1] [1] Fr; a magnetic field exists around the beta particles; (b) [1] the magnetic field of the beta particles interacts with the magnetic field of the magnets; [1] store in sealed lead containers; (c) [1] (d) 4 half-lives; [1]

[1]

11

1.875 g;